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Abstract: It is well-known that the existence of unstable zero dynamics is recognized as a major barrier in many
control problems. This paper investigates an approximate sampled-data model for nonlinear systems by the use c
multirate input and hold such as a generalized sample hold function (GSHF), and further analyzes the sampling
zero dynamics of the sampled-data model to show a condition which assures the stability of the sampling zero
dynamics of the model. The results presented here show how sampling zero dynamics of the obtained model cat
be arbitrarily placed. In a word, the stability of the sampling zero dynamics is definitely improved compared with

a zero-order hold (ZOH) or a fractional-order hold (FROH).
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1 Introduction system and are the same as those for linear case [4],

. .. although an implicit characterization has been given
Since recent control systems usually employ digi- [5].

tal technology for controller implementation, the re-
search of sampled-data systems has become an im-
portant issue in control fields. When dealing with
sampled-data models for nonlinear systems, the exact
sampled-data model is often unavailable to the con-
troller designers. Thus the accuracy of the approxi-
mate sampled-data model has proven to be a key issue
in the context of control design, where a controller de-
signed to stabilize an approximate model may fail to
stabilize the exact discrete-time model [1].

Further, Ishitobi et al. [6, 7] have pointed out that
the Yuz and Goodwin model can not be used for
discrete-time controller design, and it is necessary to
derive a more accurate sampled-data model than the
Yuz and Goodwin model in the case of a zero-order
hold (ZOH) [8]. The reason is that we need a more
accurate model in order to decide whether a controller
design method based on the assumption of the stabil-
ity of the zero dynamics can be applied. Therefore, it

However, the theory for the sampled-data nonlin- depends on stability of the sampling zero dynamics of

ear systems is less well developed than for linear case the sampled-data model.
and the absence of the good models for sampled-data Ishitobi and Nishi [9, 10] have also showed that
nonlinear plants is still recognized as an important is- the stability of zero dynamics can be improved by us-
sue for control design. Indeed, for linear systems we ing fractional order hold (FROH) stead of ZOH. It can
can write down an exact sampled-data model while be seen that the sampling zero dynamics always lie
typically for nonlinear systems we can not. Moreover, Strictly outside the unit disc when the relative degree
the exact discrete-time model of a linear system is lin- Of & continuous-time nonlinear system is greater than
ear while the exact sampled-data model for a nonlin- ©Or equal to three [6-10].
ear systems does not usually preserve important struc- For linear systems, the properties of the sampling
tures of the nonlinear systems [2]. zeros corresponding to the sampling zero dynamics
Recently, Yuz and Goodwin [3] have proposed a for nonlinear systems have been discussed in many
more accurate approximate model than the simple Eu- papers [4,11-24]. Some of the previous studies show
ler model. The resulting model includes extra zero dy- that use of a FROH instead of a ZOH overcomes the
namics which correspond to the case of relative degree problem of the instability of the sampling zeros when
one. Such extra zero dynamics are called sampling the relative degree of a continuous-time plant is t-
zero dynamics. It has been shown explicitly that they wo [12-14, 21, 23]. However, unstable sampling ze-
have no counterpart in the underlying continuous-time ros may be generated by ZOH or FROH even though
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the continuous-time system is of minimum phase. To
awid this unstable sampling zeros problem, further

ideas have been introduced such as multirate sam-

pling control and digital control with the generalized
sampled-data hold function (GSHF) [15-17,22]. Fur-
thermore, it has shown that the sampling zeros can
be placed inside the unit circle by the parameters of
GSHF. Hence, itis natural to raise the question of how
the results of the linear case with GSHF can be extend-
ed to nonlinear systems.

In this paper, we present an approximate sampled-
data model for nonlinear system, which is related with
some order of sampling period. In particular, we al-
so show how a particular strategy can be used to ap-
proximate the system output and its derivatives in or-
der to obtain a local truncation error between the out-
put of this model and the true system. Moreover, the
authors analyze zero dynamics for nonlinear systems
with GSHF to show a condition which ensures the sta-
bility of the sampling zero dynamics of the obtained
model. An insightful interpretation of the obtained
sampled-data model can be made in terms of sam-
pling zero dynamics, and their characterizations are
explicitly explored. Finally, two instructive examples
are shown to illustrate the validity of the nonlinear ap-
proximations.

2 Sampled-data model with GSHF

Consider a class of the following singer-input single-
output nth-order nonlinear system with the uniform
relative degree (< n), which is expressed in its so-
called normal form [25, 26]

i | Op1 La
¢= [ 0 of, ] ¢
- 0”1‘ ! ] (B¢, m) +alC,mu) (1)
n=c(¢,n)
y=z
21 Zr+1
Zr Zn
Cr+1(C7n)
= | 8] e=| @
CH(C777)

wherez = (¢7,n7) is the state evolving in an open
subsetM C R", anda(¢,m) # 0, b(0,0) = 0 and
¢(0,0) =0.
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First, the followingAssumptions are introduced.
Assumption 1: The unigue equilibrium point lies on
the origin.

Assumption 2: The scalar functions:(¢,n) and
b(¢,n), and the output function(¢, ) are analytic on
M.

Under Assumptions 1 and 2, the zero dynamics

of (1) are determined by
n = c(0,7n) (4)

We are interested in the sampled-data model for
the nonlinear system (1) with GSHF. However, it is
difficult to make a GSHF in practice because it is gen-
erally composed of exponential and sinusoidal func-
tions. Thus, we consider a piecewise constant GSHF
(PC GSHF) defined by piecewise constant impulse re-
sponses [15-17,22]

o, tefo,y),
te =, 20
hit) = { % N' N/ (5)
(N -1)T
ay, te [T,T)

Clearly, PC GSHF keep a regular partition in time of
sampling intervall0,T) as in the case of the ZOH
(see Fig. 1). When multiplicity output of PC GSH-
F showed in Fig. 2 is considered, each sampling pe-
riod T is equally divided into N subperiods of length

D = £ ard the control input over the subinterval
[kT, D] is described by

w(kT + D) = u; (kT), # <D< ‘% (6)

From (5) and (6), it can be rewritten as

uj(kT) = oju(kT), j=1,...,N (7)

whereq; is a real constant.

PC GSHF

Fig.1 Pulse response of a ZOH and a PC GSHF
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Then
(K1)
- Y - Yk+% = Ak7%Yk+Bk7%(bk + agoqug)
k JED roo o
u, (K1) uy(RT) Uy —I—Bh%(bk + akaluk) (15)
where
KI'  KI+D  KI%2D (k+1)T ri1 % (r_ll)'(%)?“—l 7]
0 1 (r—12)!(%)r_2
Fig.2 Multiplicity output of a PC GSHF Ak,% — o : (16)
The sampled-data model for (1) is derived below 5 %
with PC GSHF. L0 -~ 0 1 i
First, the followingAssumption is needed here. .
Assumption 3: By = { L(Lyr (T_ll)!(%)r—l z
da(c,n) =0 (8) = 1 (Tyr4l 1 (T\r 1T 2(17T)
0z By = [ () (&) 3(w)

: (18)
TheAssgmptlon 3 ensures that a new sampled-data Similarly, we give approximate asymptotic ex-
system is also an affine one. pressions of the outpd¥, ., 2+, Yy 1 as power

It can be seen frc_)m Fig. 1 that P.C GSHF keep series expansions with resgect to a sufficiently small
a regular partition in time of sampling intervgl, 7") sampling period when the input is the.,. - -
as in the case of the ZOH. Therefore, we present an res gctigeﬁ By deleting P Y’“’ ’u];fd
approximate sampled-data model for nonlinear sys- P y- BY bty kS

tem using PC GSHF by means of multiple step ap- lead the approximate expressionsYf

proach. Namely, applying the Taylor's expansion for- No1

mula in the sampling subperiods. When the inputis Y &+1 =AY+ (AT 4 Ay L) (Biby
au (kT < up < (k+ +)T), one can obtain for + Bibi) + (@ AN+ b an i Ay
sufficiently small sampling periods that

+ an1,)(Bray + Brag)ug (19)

Yrid N YR+ Lo+ + H(E) y;(f) where

r r—+1 g = ... =
—I—(7«i1)!(1v) +1y( + ) ©) Ay = Ak Ak,% (20)
; Bk:Bk,lz”‘:Bk7%7§k:§k,1:”‘:§k7%
r—1 r—1 r r+1
NS AR 16 08T _ _(21)
Next, one can also obtain the asymptotic expres-
Where sions ofny; for sufficiently small sampling periods:

., — =n,+Tn, =n,+T , 22
yé) — by + apoug, ylg r+1) _ by + Grayus (10) Mi+1 = Mk M = Mk (Ch> 1) (22)

Hence, a sampled-data model for (1) is obtained
b =0(Cromi),  ax =alCrmy)  (11) with PC GSHF as follows:

- 3 =, by, + €by + (day + da
b — abk Pk o+ 2 Oby, Pk, + %Ci (12) Ck—i—l Cp + eby +eby + ( ar + ak)uk
i=1 Oz Oz i=r+1 9z Mi+1 = Mk + Te(Crs M)
n yp = [1 0?-1]Ck
_ Obg Oak aak (23)
=g, + Dz + Zl (13) where
i=r+ (I)r _ A{CV (24)
penote (ANTY 4 Ay + I)By = e (25)
. r—1 —
Yk+% = [yk+% Yt ko y/(ﬁ%)]T (14) (A]kv_l +- -+ A+ 1)By=¢ (26)
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(a AN 4 ran 1Ay +anl)By =d (27)
(a1 AN 4t an_ 1Ay +an])By =d (28)
Then )
=
LT (r—lg!
0 1 L
O, = | (=2t (29)
0 0 1
| e - €1 . d = E
=la]e=lale=lr]a-17]
(30)
d=[d d& 1] (31)
_/ —_— _ —
d=|d & - a.] (32)
TT r—1 2
1= [ (z_n! E, T } (33)
— TT+1 _ r 3 2 T
el_(r+1)"€2:[% oy e
Tr . Tr—k .
d= FCN( )7 ;i‘ = (T‘ _ k‘)' N k(a)a (35)
. TT’+1 , Tr—l-l—l
d= r+1 r—I+1
(T+1)' N (Oé), l ( l—|—1) CN (Oé),
(36)
k=12 ,r—1
where
N
= (AF — AD )y (37)
7j=1
A=ttt a1t 38
15 — s 4325 — N ( )

In addition, we calculate the local truncation error
between the true system output and the output of the
obtained sampled-data model. It is assumed that the
state of the sampled-data model is identical to the true
system state at = k7. At the end of the sampling
intervalt = (k + 1)T, we compare the true system
outputy((k + 1)T") and the first state; ;,, of the
approximate sampled-data model.

First, on the basis of the result in [3], the true sys-
tem outputy((k + 1)T") can be expressed as

y((k +1)T) = 21 (kT) + T2 (kT) +
Tr+1

MCESY]

bk + N H@)arur]ime,  (39)

with kT < & < (k+1)T
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This yields the following local truncation output
error:

= y((k + 1)T) — 21 k11|
r+1
CGE]
— b + N (@)apuk) =k
Tr+1

= (r+1)!

bk + T (@)@rue] =,

x L[2(&1) = 2(kT)]| (40)

whereL is the Lipschitz constant. Further, the Lips-
chitz constant guarantees that [27]

eL‘gl_k’T| _ 1
[2(§1) — 2(KT)|| < C x 7
|
<Cx—7—=0(T) @)

Thus, the local truncation error between the true
system output and the output of the sampled-data
model is of orderI"+2 which implies that the accu-
racy of the obtained sampled-data model is more ac-
curate than that of the Yuz and Goodwin’s model [3].

3 Zerodynamicsof thesampled-data
model with GSHF

The zero dynamics of the sampled-data model (23)
consist of the sampled counterpart of the continuous-
time zero dynamics and the additional zero dynamics
produced by the sampling process [3]. The former are
called intrinsic zero dynamics which have counterpart
in the underlying continuous-time system. The latter
are called the sampling zero dynamics, and turn out to
be the same as those which appear asymptotically for
the linear case when the sampling period goes to zero.
First, we consider the following\ssumption so
that one can further derive the asymptotic expression-
s of the intrinsic zero dynamics of the sampled-data
model (23).
Assumption 4:

oc(¢,n)

:0 ‘:2 ...
aZi b ) T

(42)

The Assumption 4 implies that the vectot({, n)
does notinclude aterm af(i = 2,--- ,r).

Sincec(¢, n) is independent of; (i = 2,--- , )
under theAssumption 4, the sampled-data system
(23) has the sampled counterpart of the continuous-
time zero dynamics given by
(43)

M1 = M + Tc(0,my,)
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In the following, the sampling zero dynamics of

the sampled-data model are analyzed, and the main

result of this paper is given by the following Theorem
1.

Theorem 1 Assume that both,, and @, are con-
stant. Here,a;y andayy denote the values af;, and
ax, respectively. Then, for sufficiently small sampling

periods, the sampling zero dynamics of the sampled-

data model (23) with PC GSHF are given by

(1 aro Dy (z10) + TaioF,(2) =0 (44)
where
T - z'Ti i—17F
Fo(2) =) (-1 =D fri(2)
i=1 ’
N B Cr—i—l(a)
Tol2) = =3 (45)

and D, (z;«) is a monic polynomial with the order
r — 1 defined by [16, 28]

Di(za) =de 2"t +de_12" 2+ +d;  (46)
whered; are real coefficients defined by
N
di:Zaijaj,izl,---,r (47)
j=1

wherea;; are constants composed &f; and Ay;.

Proof: On the basis of the result in [3], the sampling

zero dynamics of the model (23) are calculated below.

First, when set;, .1 = 0 andy;, = 0, then (23) leads
to

0 = p11Cp + pr2uk + P13bro (48)
Crp1 = P21y + pazuy + pasbro (49)
where
2 r
b11 = [ T ST (2,?_1)1 (50)
r r—+1 41
T Il —
P12 = —ycn(@)ago + o DN (a)ary  (51)
Tr Tr+1 _
= 52
P13 = —bro + T 1)!bk0 (52)
T'r72
LT (r—2)!
_ 1 ... :
b21 = (53)
0 0 1
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r—1
(z: 1>'C§v1( a)ago + T (@)aro

T—2 r —
T (@)aro + el (@)

P22 =

Tayy + g—?C?V (a)ago
» ~ (54)

9 _
( 2)1 ka + (7« 1) ka

P23 = (55)

2 p—
Ty + E—!bko

Hence, noting that the order gfis and po3 is
higher with respect td@" than the corresponding one
of p11 andpo1, and leads to the sampling zero dynam-
ics

D,.(z2)v=0 (56)
where
_ —pli P12 [ Z[¢)
r(2) = 2l —pa1 —p22 ] v [ Z[uy]
(57)

whereZ[.] denotes the-transform.
As a result, the sampling zero dynamics are ob-
tained from|®,.(z)| = 0, where

T'rfl
-T RG] Or
z—1 ~i=r 01
2.(z) = | o (°8)
: -T 02
0 z—1 01
where
Ti i Ti+l i+1 —
0 = _WCN(Q)QRO - m N (@)aro
i=1,---,r

The determinant®,.(z)| can be expanded along
the first column as follows:

@ (2)] = = T|®r1(2)] = (2 = 1)

T2 Tr— 1
B IR
z—1 (3_3)1 Or—2
X 0
=T 02
0 z—1 (51

Z—l)’ Her—i(2)]  (59)
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where
|Do(2)| = cy(a)aro + %1(104)@0 (60)
Hence, the following result is obtained
@ (2)] = arofr(2) + Tarofr(2)  (61)
where
6 = YR
J(e) = (e (62

It is obvious that the order of any term 6f(z) is
r with respect ofl". Here, the following relation holds
from Appendix

TT
fr(z) = (—1)’”WDT(2;04) (63)
Therefore, the result (44) follows from (61) and
(63). O

Remark 2 The polynomialsf,(z) are listed below
for a few values of.

Fi() = —5la),r =1

_ T2

Falz) = 2o (G (a)= + 36K (0) — (o), r = 2
3

Fa(2) =~ ek (@)2” + [2¢k(0) + 4ck (o)

— e} (@) + 6} ()]},
r=3

+ 6 (@)]z + [cy (@)

4
Fa(e) = ek (@)= + [3¢k (0) + 5ek(0)

+10¢} () + 10c (@)]2? + [3cR (cv)
—10¢y (@) + 40c% ()]z + [~ ()
+ 5¢n (@) — 3063 (@) 4 703 ()]}, r = 4

5

Tal) = — g k(@)= + [~ () + 663 (@)
+ 15¢h () 4 2063 () + 1563 ()] 2°
+ [6¢% (@) — 18c% (o) — 1564 (av
+ 60c3 () 4 165¢% ()22 + [—4c
+ 18¢3 () — 15¢k () — 60cX ()
4 165¢% ()] 2+ [ (@) — 663 (a) + 15¢y (a)
— 140¢} (@) + 375¢% ()]}, r =5 (64)

v(@)

\_/\_/
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Remark 3 When theAssumption 3 is not fulfilled,
the term(b + au)da/0z, is included inby, of (12) and
in @, of (13), and then there may appear the tesfn
in (23).

Remark 4 From (43) and (44), it is found that the
sampled counterpart of the continuous-time zero dy-
namics and the sampling zero dynamics can not be
determined separately when thAssumption 4 is not
satisfied.

Remark 5 The proposed model (23) is more accurate
than the Euler model so that a controller design by the
Euler model [29-31] is easier but better performance
could be obtained if the sampled-data model (23) is
useful for controller design.

In the particular case when the relative degreef
nonlinear system is two or three and = r + 1, the
stability conditon of zero dynamics for a sufficiently
smallT is shown by the following Theorem 6.

Theorem 6 Consider an affine nonlinear system (1).
Case(a)r = 2and N = 3: The sampling zero dynam-
ics of the sampled-data model (23) with PC GSHF for
sufficiently small sampling periods are stable if both
ayo anday, are constant and

(2ak0 + %Tﬁko)al + (2ak0 + Tﬁko)ag

+(2ako + %Tﬁko)ag >0

(%Tako — dago)oy + %Takoag

+(4ako + 3Tako)az > 0

[(3ako + §?T6ko)a1 + (aro + ZTar)az

+(Zaro + 3Taro)as| < (Saro + $2Tako) 1

+(aro + T aro)oz + (3aro + $Tako) s

(65)

Case(by = 3and N = 4: The sampling zero dynam-
ics of the sampled-data model (23) with PC GSHF for
sufficiently small sampling periods are stable if both
ayo anday, are constant and
(37aro — %Tﬁko)oq + (19ago —
+(Taro — 15T ko) s + (aro — 75T ako) s > 0
[(aro — ?éTﬁko)al + (Tary + FdTarg) oz

+(19axo + 1 Tako)ozg + (37ako + 16T‘1k0)0‘4|

(37ak0 — 16 Tako)ozl + (19ak0 T
+(Tago — i_gTakO)a?» + (ago — 1—16T6k0)044
(3aro — 3T aro)on + (3aro — 13T ako) 2

+(Bary — 15T ko) s + (3ako — 15T ako) s > 0
(161 Tayy — 5ak0)a1 + ( 175 Tayy — 11ak0)a2+
(2Tay — 1lag)as + (lﬁTak0 Sagg)oy > 0

(66)

65—
16T ko) o

85 Tko) cva
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Proof: Case (a): For = 2 and N = 3, we have [28]

1
cnla) = 5(041+a2+a3)
A(a) = §a —i—la —i—la
N = gtz tgas
cy(a) = goz —1—104 + —«
Y S A
Further
1
Az a) = 3 x {
1 1 5
|:§ <5ak0 + 99Tak0> o1 + <ak0 + 2—7Tﬁk0> e %}

+1 + 1T_ + L + 26T‘
p— p— z p— R
3\ @k0 T 34 a0 Jos 3| @Ko T g dko

22 1 2
+ <ak0 + 27Tak0> g + 3 <5ak0 + gTﬁk(]) 043}
(67)

Thus by the Jury stability test [32], the roots of
the polynomialA(z; «) = 0 are located inside the unit
circle if and only if (65) holds.

Case (b): Similarly, For = 3 and N = 4, we have
[28]

1
lev(a) = 1(0414‘042-1-0434-044)
cy(a) = —a —|—Ea —1—304 —|—ia
N T o6t 16 et
() = ga —1—904 + -« —|—ia
N Y R Ve Vs S Ve
( ) _ 175 65 n 15 n 1
nl@) = oM T 5562 T 9568 T 256
Then
B(s0) = = x {
Z) = —
’ 32
37 175 19 65
[ 5 k0 ~ 1—6Tak0>041 +< 5 ko — 1_6Tak0>a2
7 15 1 1 )
S0k — 1577 — —Ta
+<2ak0 16 ako>a3+<2ako 16 ak0>044]
+[<29ak0 — Tak()) 041+< dary — Tak0> e %)
+ <35ak0 — —Tak()) 043—|-< 9ary — —Tak0> 044:| z
1 7 1
+ <5 aro — —Tak0> oy + <§ ako + —Tak0> Qg
19 161 37
+<7 k0+—TakO> Oé3+<— ako + Tako) Oé4}
(68)
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When we perform the bilinear transformation=
©+1 on the above equation, by the Jury stability test
[32], thus the roots of the polynomid@(z; «) = 0 lie
inside the unit circle if and only if (66) holds. O

Remark 7 As in the foregoing statement, the sam-
pling zero dynamics can be assigned inside the unit
circle for a sufficiently small” by choosing design pa-
rametersa;(j = 1,--- , N, N > r) so that the sam-
pling zero dynamics polynomial of (44) is identical to
a desired stable one, though it seems difficult to derive
explicit inequality relations for > 4.

4 Examples

This section presents two interesting examples to
analysis the stability of the sampling zero dynamics
of a more accurate sampled-data model than that of
Yuz and Goodwin model with PC GSHF.

Consider a controlled Van der pol system with the
following equation [25, 26].

1"1 = X9
Y=

where the parameteris constant.

It is obvious that the relative degree of the system
(69) is two, and that the system does not have any
zero dynamics. From (12), (13) and (69), It is easy
to obtain

a(Cr,mi) = 1,6(Cp,mi) = —71 ‘1'5(1—33%)332 (70)
ob da 9

a(Cpyny) = a—ma + 8—331332 =e(l—27) (71)
- ob ob
b(CIm"?k):a—:L,lx? + a—@b

=(—1—2ex129)72 + (1 — 23)b (72)

A further more accurate sampled-data model [6—
8] than that of Yuz and Goodwin is expressed as

Tigy1 = 1k + Toog
+T72[—x17k +e(1— x%k)l'gk + g
—1-731—!3[—31:27;€ - Qeml,kwg’k +e(1— x%k)
x{—x1 +e(1— :L'%k)ﬂilk + ug}]
Topr1 = ok + T|—z1 )+ (1 — .Z'%k)(ﬂgk + ug]
+€—,2[—902,k - —274)
x{—z1p +e(l —af )won + ur}]

Yy=2=T1k

2£w1,kw§’k +e(1

(73)
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The sampling zero dynamics of (73) is expressed

as
14T =0
3

Therefore, the sampling zero dynamics are obvi-
ously unstable.

A sampled-data model with PC GSHF is repre-
sented as

(74)

T1 k41 = T1k + Lo +
+e(1 — 951 k)ﬂ?g i+ 2
—2ex ka:2 pte(l—x

Tl
)uk] + I

k){ L1,k
+e(1 — 2?2 k):ng g+ cx(a)e(l — 22 k)uk}]

T g1 = Tog + T[—x1p + (1 — xl,k)xzk
+ck (e)ug] +
te(l —af )~z +e(1 —af )zak
+e}(a)e(l —af y)ur}]

Y=k

«a [x2k

v (
i
(

T2 2
Srl—Tak — 26wy g3y,

(75)
The sampling zero dynamics of (75) is expressed

as
2cl ()
()

From (76), the sampling zero dynamics of the
sampled-data model (75) are stable for sufficiently
small sampling periods ifa; + a2 + as3)(bay +
3ag + a3) > 0. Thus, there exists a set of solutions
a1 = 1, a0 = —0.202 andas = —0.624 such that the
sampling zero dynamics are stable for sampling peri-
odT = 0.01 at N = 3. On the other hand, There
is also the rest of the solution to meet the relationship
(76) for Van der pol system with PC GSHF. In addtion,
we should preserve the stability of zero dynamics by
choosing the parametefig(j = 1,--- , N) while sat-
isfying other performance requirements.

2— 1+ ) (76)

Based on above researching analysis, we consider

here model following control such that the output con-

verge to the origin. Moreover, some phenomenon can
seems that the stability of the closed-loop system is
related directly to that of the zero dynamics of a more

accurate sampled-data model. A discrete-time model
following controller is designed using the model as

EamICTE

2

N

+2
T2

up = e(1 — 2 ) ok

(B—1)z1p—Tzogl}, 0<pB<1

The parameter$’ = 0.01,e =1,k =1andg = 0.8

are used in simulation, and the simulation results are
shown in Fig. 3 and Fig. 4.
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Control input
)

0 10 20 30 40 50 60 70

Time t
Fig.3 Input of Van der pol in sampled-data model
with a PC GSHF
3.

0 10 20 30 40 50 60 70
Time t

Fig.4 Output error of Van der pol in sampled-data
model with a PC GSHF

Next, we consider an extended pendulum system

with the relative degree three

(/'Ul = X9
T | (77)
T3 = —cry — dsinxy + au
y=1a1
From (12), (13) and (77), It is easy to obtain
a’(Cka T’k) = a, b(CIw nk) = —Cxr2 — dSiTLZ’l (78)

ob Oa Jda
a(Cr,Mi) = o —a+ a—xla:g + 8—:132963 = —ac (79)
- ob ob ob
b(Crsni) = 8—3:1$2 + 8:133b+ 8—:132$3

—dxacosx — cxs (80)

A sampled-data model with PC GSHF is repre-
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sented as

2
Tigt1 = Tk + Txop + %$3,k
3
+ L (w1 gz g + e (@)uy)]
4
+irleag(@l  +2ap) + (@) pu]
_ T2 3
To g1 = Top + T3 + Srl[r1 sk + e ()ug]
3
+ 5w k(d 4 mok) + c (@) pug]
T3 p+1 = Ta g + Tz s + X (a)ug)
2
o [a,p (2] + T2k) + i @)z k]

Y=721k
(81)

The sampling zero dynamics of (81) is expressed
as

2+ 2+Tp Tpio (©2)
1 =0
Tﬁm z+ 2+ TP
where
By = ch(@)ac Bl = —2¢%(a) + Tk (a)ac
5 5
—24¢3 () + 12T} (a)ac 3¢k (a)ac
P = 5 Par = ———

6 = 4cx (o) — Ty (a)ac

From (82), the sampling zero dynamics of the
sampled-data model (81) are stable for sufficiently s-
mall sampling periods 12521 > 9 or 812621 < 1,
i.e.,

—96[c3; ()]? + 24T c3; (o) i (@) ac
+3T2%[c} (a)ac)®* > 0

32[c3 ()] — 40T (o) ey (a)ac
+11T2%[c} (a)ac)? < 0

(83)

where the parameterandc are constant.

Thus, simple straightforward calculation verify
that the sampling zero dynamics (82) can be arbitrar-
ily assigned inside the unit circle by choosing design
parametersy; of the ¢, («) andc}; (o) which satisfy
the inequality (83).

When the relative degree of the continuous-time
system is three, the sampling zero dynamics with
FROH are unstable [9, 10]. However, we can choose
the parametersy;(j = 1,--- ,N) so that the sam-
pling zero dynamics of the sampled-data model with
PC GSHF are located into a stable region from (66).
Thus, the use of PC GSHF instead of ZOH or FROH
overcomes the problem of the instability of the sam-
pling zero dynamics when the relative degree of a

continuous-time plant is greater than or equal to three.
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5 Conclusion

This paper derives a good approximate sampled-data
model for nonlinear continuous-time systems in the
case of a PC GSHF, which the obtained discrete mod-
el uses a more sophisticated derivative approximation
than the simple Euler approach. In addition, we al-
S0 analyze the stability conditions of zero dynamics
when the relative degree is two or three and= r+1.

We further show how the sampling zero dynamics of
the model obtained can be expressed in such a way
that the discrete zero dynamics are given by the sam-
pled counterpart of the continuous zero dynamics, to-
gether with extra zero dynamics produced by the sam-
pling process. As a result of this work, it has been
shown that the zero dynamics of the sampled-data
model with PC GSHF can be located inside the sta-
bility region by choosing suitable values of the design
parametersy;(j = 1,---,N). For a future study,

it is still necessary to preserve the stability of sam-
pling zero dynamics by appropriately selecting design
parameters of PC GSHF while satisfying other perfor-
mance requirements, such as gain margin, intersample
ripples, etc.

Appendix

Proof of (63).
Consider a linear transfer function

1

ST’

G(s) (84)
with an inputu(t) and an outpuy(¢). In the follow-
ing, we discuss the sampled-data model obtained from
the linear system (84) by use of a PC GSHF.
First, we define the state variables such as
z1(t) = y(t),wa(t) = 4(t), - e (t) = g™ (1),
Applying a higher-order Taylor expansion such as

o T (it
zik+1) =y~ (k+1) = 30—y

=0

(85)

j:1727'” , T

Thus, the matrix state equation is expressed as

r Tr—l B r7" B
1 T .. —cy(a
(r—1)! (@)
Tht1= : Tit T2 ' U
2
O T ch(a)
i 1] Tey (o)
ye=[1 0 0 Jzk
(86)
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wherex;, = [z1(k), z2(k), -, 2. (k)]T.
The zeros of the sampled-data model above are
determined by/(k+1) = y(k) = 0in (86) as follows:

T2 Tr—l B T

0=1T T T et k(@

r—2 r—1 r—1

LT ooy ey (@)

Thy1— 0] Trt+ Uk

1 Tch (o)
(87)

wherez, = [zo(k), -,z (k)]T.

Apply z-transform to (87), then we see that the
zeros are solution db,(z)| = 0, where

or(z) =
B B oy Bl )
r— r—1
z—1 =T —(3:_2)! —ﬁc]v Ya)
0 z—1 —Teki(a)

(88)

Expanding¢,.(z) along the first column and re-
peating this operation lead to

S e = 1) ()
=1

¢o(z) = cy(a)

which the order ofp;(z) is obviously: — 1 from the
definition.

When the transfer function (84) is discretized by
a PC GSHF, the pulse transfer functi@q(z) is given

by

(89)

_ T"Dy(z;0)
whereD,.(z; «) is a monic polynomial with the order
r — 1 [16]. Therefore, we have obtained (63).

As a result, the proof is complete.
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